Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; 39(1): 114-136, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30372626

RESUMO

Innovation is a key determinant of sustainable growth. Biotechnology (BT) is one such industry that has witnessed a revolution in innovative ideas leading to the founding of many new companies based on providing products, solutions and services, stretching from the food industry to environmental remediation, and new medicines. BT holds much promise for the development of national and local economies, however, this requires a strategic approach involving actors within government, industry, and academia working in concert to maximize this potential. This first article reviews the current "state of play" in the field of BT within the Central Eastern European (CEE) countries. For the purposes of this article, CEE refers to the countries of Czech Republic, Hungary, Poland, and Slovakia (the so-called Visegrad - V4 countries). We examine the components that support the creation and development of a BT sector in CEE and also highlight the barriers to these objectives. Clearly setting priorities for the countries' policy agenda, as well as the alignment of Smart Specialization Strategy will help to focus efforts. Recent investments in R&D infrastructure within CEE have been substantial, but conditions will need to be optimized to harness these largely European investments for effective use towards SME high-tech development.


Assuntos
Biotecnologia , Desenvolvimento Industrial , Indústria Manufatureira , Projetos de Pesquisa , Biotecnologia/economia , Biotecnologia/educação , Biotecnologia/legislação & jurisprudência , Biotecnologia/organização & administração , República Tcheca , Meio Ambiente , Europa (Continente) , Governo , Humanos , Hungria , Indústria Manufatureira/organização & administração , Polônia , Eslováquia
2.
Crit Rev Biotechnol ; 39(1): 137-155, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30372630

RESUMO

Innovation holds the potential for economic prosperity. Biotechnology (BT) has proved to be a viable vehicle for the development and utilization of technologies, which has brought not only advances to society, but also career opportunities to nation-states that have enabling conditions. In this review, we assess the current state of BT-related activities within selected new and preaccession EU countries (NPA) of CEE region namely Croatia, Romania, Bosnia and Herzegovina and Serbia, examining educational programs, research activity, enterprises, and the financing systems. The field of BT covers a broad area of activities, including medical, food and agriculture, aquaculture or marine, environmental, biofuels, bioinformatics, and many others. Under the European Commission (EC), member-states are to set their Research and Innovation Strategies for Smart Specialization (RIS3), to identify priorities or strengths in order to develop knowledge intensive economies. As the four countries highlighted in this review are in the early stages of implementing RIS3 or have not yet fully formulated, it presents an opportunity to learn from the successes and failures of those that have already received major structural funds from the EC. A critical point will be the ability of the public and private sectors' actors to align, in the implementation of RIS3 as new investment instruments emerge, and to concentrate efforts on a few select target goals, rather than distribute funding widely without respect to a long-term vision.


Assuntos
Biotecnologia , Desenvolvimento Industrial , Projetos de Pesquisa , Agricultura , Biotecnologia/economia , Biotecnologia/educação , Biotecnologia/legislação & jurisprudência , Biotecnologia/organização & administração , Bósnia e Herzegóvina , Croácia , Europa (Continente) , Financiamento Governamental , Humanos , Indústria Manufatureira , Pesquisa , Romênia , Sérvia
4.
J Biotechnol ; 282: 38-45, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-29890193

RESUMO

Strategies for biotechnology must take account of opportunities for research, innovation and business growth. At a regional level, public-private collaborations provide potential for such growth and the creation of centres of excellence. By considering recent progress in areas such as genomics, healthcare diagnostics, synthetic biology, gene editing and bio-digital technologies, opportunities for smart, strategic and specialised investment are discussed. These opportunities often involve convergent or disruptive technologies, combining for example elements of pharma-science, molecular biology, bioinformatics and novel device development to enhance biotechnology and the life sciences. Analytical applications use novel devices in mobile health, predictive diagnostics and stratified medicine. Synthetic biology provides opportunities for new product development and increased efficiency for existing processes. Successful centres of excellence should promote public-private business partnerships, clustering and global collaborations based on excellence, smart strategies and innovation if they are to remain sustainable in the longer term.


Assuntos
Biotecnologia , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Testes Diagnósticos de Rotina , Equipamentos e Provisões , Edição de Genes , Humanos , Cooperação Internacional , Neoplasias/terapia , Parcerias Público-Privadas , Análise de Sequência de DNA , Biologia Sintética
7.
J Biotechnol ; 126(2): 135-9, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16730833

RESUMO

The development of new technology within biological sciences has resulted in a number of real-time PCR instruments that have become essential tools within molecular biology. This equipment has facilitated high throughput analysis of samples and optimal information gathering of completed PCR reactions for example estimating the copy number of a gene of interest that is inserted into particular genomes. Real-time PCR instruments frequently come with optional filter sets, e.g. the ALEXA filter set which has parameters in common with excitation and emission wavelengths of sodium methyl umbelliferone (NaMU) widely used in beta-glucuronidase reporter gene assays. Using these filter sets it has been possible to quantify and measure gus A activity of Ulmus procera SR4 in real-time removing the necessity for aliquots of reactions to be stopped by pipetting into carbonate buffer for each time point. The introduction of real-time GUS analysis leads to faster, more accurate and reproducible assays with reduced potential for pipetting errors, requires fewer manipulations and encourages high throughput analysis of inter-individual gene expression variation.


Assuntos
Perfilação da Expressão Gênica/métodos , Genes Reporter/genética , Glucuronidase/análise , Glucuronidase/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/instrumentação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Desenho de Equipamento , Análise de Falha de Equipamento
8.
Nucleic Acids Res ; 34(Database issue): D712-6, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16381965

RESUMO

DRASTIC--Database Resource for the Analysis of Signal Transduction In Cells (http://www.drastic.org.uk/) has been created as a first step towards a data-based approach for constructing signal transduction pathways. DRASTIC is a relational database of plant expressed sequence tags and genes up- or down-regulated in response to various pathogens, chemical exposure or other treatments such as drought, salt and low temperature. More than 17700 records have been obtained from 306 treatments affecting 73 plant species from 512 peer-reviewed publications with most emphasis being placed on data from Arabidopsis thaliana. DRASTIC has been developed by the Scottish Crop Research Institute and the University of Abertay Dundee and allows rapid identification of plant genes that are up- or down-regulated by multiple treatments and those that are regulated by a very limited (or perhaps a single) treatment. The INSIGHTS (INference of cell SIGnaling HypoTheseS) suite of web-based tools allows intelligent data mining and extraction of information from the DRASTIC database. Potential response pathways can be visualized and comparisons made between gene expression patterns in response to various treatments. The knowledge gained informs plant signalling pathways and systems biology investigations.


Assuntos
Arabidopsis/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Etiquetas de Sequências Expressas , Internet , Plantas/genética , Plantas/metabolismo , Transdução de Sinais , Software , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...